# ДЕТЕКЦИЈА И СПЕКСРОМЕТРИЈА РАДИОАКТИВНОГ ЗРАЧЕЊА FORMIN BOODD

нуклеарне реакције

- хемијске реакције
- депоновање енергије
- ексцитација
- јонизација

 ефекти које радиоактивно зрачење испољава при проласку кроз материјалну средину представљају основ за његову детекцију.

ENAMINE E CORDER

#### Основни приципи

#### Детектори трагова

- Детекција трагова честица које настају у радиоактивном распаду
- На основу димензија трагова, пре свега дужине, могуће је одредити масу, наелекстрисање као и енергију емитованих честица





### Маглене и коморе за детекцију мехурића

#### Траг је привремен и траје мање од секунде







#### Чврсти детектори трагова

- Обезбеђују трајнији запис трагова
- Материјал детектора фотографска емулзија, пластика, стакло
- Нуклеарна емулзија садржи до 80 % AgBr (8 х више од стандардне фотографске) у желатину.
- Трагови из пластичних детектора се моку добити нагризањем орагнским растварачима; из стакла нагризањем са HF

#### "Трагови се пре поновне употребе детектора морају обрисати (хромна киселина, пара $H_2O_2$

- Примене детектора трага
  - Детекција и иденификација честица из космичког зрачења
  - in situ анализа нуклеарних реакција
  - Детекција подземних депозита уранијума
  - Предикција земљотреса
  - Одређивање концентрације радона затвореним просторијама
  - Одређивање садржаја уранијума

Опште карактеристике детектора радиоактивног зрачења

- У основи три типа детекције
- Преко створених носиоца наелектрисања
  - Јонизациона комора
  - Пропорционални бројач
  - Гајгер-Милеров бројач
  - Полупроводнички детектори
- Преко побуђивања средине сцинитилациони детектори
- Преко нуклеарних реакција детектори неутрона;

#### Јонизујућа честица у детектору производи и разводи и ра И разводи и р И разводи и разводи

$$\Delta Q = e E_g \eta \omega^{-1}$$

е- елементарно наелектрисање

- $E_q$  енергија честице изгубљена у детектору
- $\eta$  ефикасност сакулљања наелектрисања
- *w* енергија потребна за фромирање пара носица наелектрисања

Наелектрисање се генерице у кратком временском периоду (10<sup>-4</sup> до 10<sup>-9</sup> s). Његово сакупљање на електродама ситема генерише краткотрајну струју (импулс наелектрисања)
 i = <sup>ΔQ</sup>/<sub>4t</sub>

Које се преко отпорника (најчешће) преводи у напонски импулс  $\Delta U = R \frac{Q}{\Delta t}$ 

Додатна подела детектора
 само региструју радиоактивно зрачење (не разликују тип ни енергију честице)
 Региструју и могу да мере енергију упадног зрачења

Електрична шема уређаја за детекцију



D.





Укупно пренесено наелектрисање у процесује

 $\Delta \overline{Q = -en_i a}$ 

а- је фактор умножавања (гасни детектори >>1, чврсти детектори =1

Максимални пад напона је

$$\Delta U = \frac{\Delta Q}{C}$$

Нпр. За 100000 носиоца наелектрисања и C=100 pF  $\Delta U$  = 16 mV<sup>4</sup>

#### Детекциони ситеми Мерач Извор напона Писач брзине одброја ПП Вишеканални Појачивач Компјутер анализатор Дискриминатор Тајмер Принтер Једноканални Мењач Тајмер анализатор узорка

- Детектор је везан за претпојачивач који има услогу појачања одговора детектора 10-10<sup>4</sup> пута (10 за ГМ детектор, 10<sup>4</sup> за полупроводничке детекторе)
- Дискриминатор служи за елиминцију импулса (*шум*) који поричу од термичког шума детектора, претпојачивача иелектронских кола. Он одређује праг висине импулса који ће бити регистровани.



## Време разлагања пулсева и мртво време

 Карактеристика свих детектора је постојање периода када детектор не региструје нове импулсе је мртво време.

При већим брзинама бројања може доћи до нагомилавања (*pile-up*) импулса тако да их детектор региструје као један.

Време које је потребно да се сва узастопна импулса региструју као један је време разлагања //

 Оно што се стварно одређује као мртво време је време разлагања



 Два модела мртвог времена без парализе детекције са парализом детекције





#### Корекција на мртво време

Систем без парализе

укупно изгубљено време је т<sub>u</sub> = N<sub>obs</sub>τ
 N<sub>obs</sub> - укупан број импулса регистрованих за време мерења
 т- мртво време
 Реални (кориговани) број импулса

$$R_r = \frac{R_{obs}}{(1 - R_{obs}\tau)}$$

ИЛИ

$$R_r = R_{obs} + R_{obs}^2 \tau$$

NIX IS CORDA

Систем без парализе

$$R_r = R_{obs} e^{R_{obs}\tau}$$

### Методе одређивања мртвог времена

Метода два извора А и В приближно једнаких активности
 Мере се извори засебно, а затим заједно

$$x = R_a R_b - R_{ab} R_0$$

$$y = R_a R_b (R_{ab} + R_0) - R_{ab} R_0 (R_a + R_b)$$

$$z = \frac{y(R_a + R_b - R_{ab} - R_0)}{x^2}$$

$$\tau = \frac{x[1 - (1 - z)^{1/2}]}{y}$$

Метода мерења активности краткоживућег радионуклида

$$R_{obs}e^{\lambda t} = R_0 - R_0 \tau R_{obs}$$

Мртво време се одређује са графика

 $R_{obs}e^{\lambda t} = \mathbf{f}(R_{obs})$ 

#### Гасни детектори-опште карактеристике

- Сви гасни детекори су базирани на сакушљању јона који настају под дејством радиоактивног зрачења
- Уобичајени дизајн укључује централну аноду (r око 20 µm) у чијој се непосредној близини врши мултипликација носиоца наелектрисања
- Број прикупљених јонских парова на сложен начин зависи од примењеног напона те на дијаграму I=f(U) разликујемо неколико области



### Јонизационе коморе

Вище конструкционих решења (паралелне електроде, централна анода...)



Обично су испуњене аргоном 

Зависност *Д*U=f (U) указује на област напона када број регистрованих јона не расте –плато. У овој области раде јонизационе коморе.
 Вредност струје на платоу назива се струја засићења 2

 $I_s = eAE_{gubitak}\eta\psi_{geom}\omega^{-1}$ 

За типичне параметре код јонизационих комора

$$I_s = 1 \cdot 10^{-9} A^{4}$$

- Ово изискује присуство велике вредности отпора R
- Често се праве и у преносном режиму и калибрисан су за мониторинг брзине дозе

#### Пропорционални детектори

Раде у области где је појачање од 10<sup>3</sup> – 10<sup>5</sup> при чему за дати напон остаје очувана пропорционалност између енергије упадне честице и броја генерисаних јонских парова.

Формирање пулса не зависи много од мобилности позитивних јона, већ детектор генерише нове импулсе у врло кратком времену (τ~2-5-10<sup>-7</sup> s)

 Да би се редуковала зависност фактора мултипликације од напона у аргон се додају метан или бутан (Родносно Q-смеша)

Две варијанте израде: затворене и отоврене коморе

Отворене коморе су погодне за мерење ниских активности (<sup>14</sup>С и <sup>3</sup>Н) у доброј геометрији

Варијанта са BF<sub>3</sub> пуњењем обогаћеним са <sup>10</sup>В за детекцију неутрона
<sup>10</sup>B + <sup>1</sup>0n → <sup>7</sup>Li + <sup>4</sup>He



### Гајгер-Милерови бројачи

Бројач ради у области у којој долази до додатног генерисања носиоца наелектрисања и губитка пропорционалности са енергијом упадне честице

- Висока осетљивост величина напонског импулса 0,1-1 V што не захтева комплексну електронску опрему.
- Улазак честице у активну запремину изазива лавину секундарних јонских парова.
- Пошто и секундарни јони могу довести до појаве павине електрона око катоде, неопходно је додавање органских молекула који имају нижу енергију јонизације од Ar

 $Ar^+ + C_2H_5OH \rightarrow Ar + C_2H_5OH$ 

AP DO

Молекули халогених гасова се додају место органских да би се продужио век бројача

Праћењем зависноти струје од напона запажа се да постоји област у којем не постоји даљи пораст регистрованих импулса – плато бројача – он се обично користи као радни напон бројача



CORDA

#### Сцинтилациони детектори

Феномен запазили Rutherford & Soddy 1908.

- Пролазак зрачења кроз средину сцинитлатора изазива ексцитацију његових молекула на више вибрационе нивое побуђеног електронског стања
- Вибрације се деексцитују термички док електронски прелаз доводи до емисије фотона из видљиве области спектра.
- Добри органски сцинтилатори: антрацен, стилбен
   Неоргански CsI(TI), NaI(TI)

🥫 У неорганске сцинтилаторе додаје се одређена количина "нечистоћа" TI, In...

- Механизам стварања сцинтилација код њих иде преко стварања парова елекрон – шупљина.
- Течни сцтинилациони детектори имају нижу осетљивост али омогућавају рад у 4π геометрји и мерење ниских енергија.
- Емитована светлост се преко оптичке спреге преноси на фотокатоду фотомултипликатора (најчешће од Cs<sub>3</sub>Sb) из које избија електроне.
- Електрони се даље у систему секундарних анода-ROMPORT динода умножавају.
- Крајње појачање је око 106



Сцинтилатор са фотомултипликатором

Гечни сцинтилациони детектори
 Пајвећу примену су нашли у нализи биолошких и медицинских препарата

Најчешће коришћени сцинтилатор р-терпенил

Да би се таласна дужина емисије поклапала са максимумом осетљивости фотомултипликатора додају се молекули "шифтера"

 Проблем- ефекат гашења који испољава растворени узорак.

#### Детектори неутрона

Неутрони се детектују посредно – преко честица које настају у нуклеарним реакцијама неутрона са језгрима <sup>10</sup>В, <sup>6</sup>Li....

 ${}^{10}B + {}^{1}_{0}n \rightarrow {}^{7}Li + {}^{4}He$   ${}^{6}Li + {}^{1}_{0}n \rightarrow {}^{3}H + {}^{4}He$ ■ Користе се уобичајени детектори, најчешће гасни ■ фотоемулзије допиране бором ■ Сцинтилациони кристали са литијумом LiCI-BaCI<sub>2</sub>

IPDD

• Преко неутронске активационе анализе

### Спектрометри неутрона

|                     | врста                            | енергија               |  |
|---------------------|----------------------------------|------------------------|--|
|                     | субтермички                      | <0,025 eV              |  |
|                     | термички                         | ≈0,025 ( <i>ε</i> =kT) |  |
|                     | епитермички                      | 0,1 eV < ε <1 eV       |  |
|                     | спори                            | 1 eV < ε <100 eV       |  |
|                     | средње брзи                      | 100 eV < ε <100 keV    |  |
|                     | брзи                             | 100 keV < ε <100 MeV   |  |
|                     | ултрабрзи                        | ε>10 MeV               |  |
| Механички селектори |                                  |                        |  |
|                     | Svetlost<br>Fotoćelija<br>Brojač | $\square$              |  |
| Cilinda             | r Al-Cd                          | $\varphi$              |  |

#### Кристални спектрометар





Инверзно везана p-n диода



 Предности у односу на остале детекторе:
 Мала енергија потребна за генерисање пара електрон-шупљина (3,62 eV Si, 2,74 eV Ge – Ar-15

eV

#### Идеални уређаји за спектрометрију радиоактивног зрачења

- Si за спектрометрију  $\alpha$  и  $\beta$  зрачења
- Ge за спектрометрију γ зрачења

![](_page_31_Picture_3.jpeg)