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INTRODUCTION

In 1934, Enrico Fermi, then a professor of
theoretical physics at the University of Rome,
Ttaly, proposed his clear and simple description
of 8 decay. He assumed the existence of the neu-
trino which Pauli bad suggested to preserve the
principle of conservation of energy, and he treated
the ejection of electrons and neutrinos from a
nucleus by a method similar to the radiation
theory of photon emission from atoms. Fermi de-
rived quantitative expressions for the lifetime
of 8 decay, as well as for the shape of the g-ray
emission spectrum.

Fermi’s theory, aside from bolstering Pauli’s
proposal of the neutrino, has a special significance
in the history of modern physics. One must re-
member that only the naturally occurring 8 emit-
ters were known at the time the theory was pro-
posed. Later when positron decay was discovered,
the process was easily incorporated within Fermi’s
original framework. On the basis of his theory,
the capture of an orbital electron by a nucleus
was predicted and eventually observed. With
time much experimental data has accumulated.
Although peculiarities have been observed many
times in 8 decay, Fermi’s theory always has been
equal to the challenge.

The consequences of the Fermi theory are vast.
For example, 8 spectroscopy was established as
a powerful tool for the study of nuclear structure.
But perhaps the most influential aspect of this
work of Fermi is that his particular form of the
8 interaction established a pattern which has
been appropriate for the study of other types of
interactions. It was the first successful theory of
the creation and annihilation of material par-
ticles. Previously, only photons had been known
to be created and destroyed.

* B. Fermi, Z. Physik 88, 161 (1934). Springer~Verlag

Berlin, Heidelberg, New York, has given permission to
publish this translation.

To appreciate the impact produced by Fermi’s
theory of 8 decay on modern physics, one may
note that it is rather amazing what varieties of
observed phenomena (and what thicknesses of
the Physical Review) are based on his one paper
on the subject. For example, the experiment pro-
posed by Yang and Lee in 1956 to test conserva-
tion of parity, involved the properties of 8 decay
of %Co.

With his paper on 8 decay, Fermi brought to a
close his purely theoretical studies and became
an experimentalist. Thus this paper on 8 decay,
which in its main outlines is still considered cor-
rect, is of significant importance not only to the
development of modern physics, but also to the
memory of Enrico Fermi. A complete translation
is provided below.

Attempt at a Theory of 8 Rays' I

A quantitative theory of 8 decay is proposed,
in which the existence of the neutrino is assumed.
The emission of electrons and neutrinos from a
nucleus by 8 decay will be freated by a method
similar to that for the emission of a light quantum
from an excited atom in radiation theory. For-
mulas for the lifetime and for the form of the
continyous B-ray emission spectrum are derived
and compared with experiment.

1. BASIC ASSUMPTIONS OF THE THEORY

Two well-known difficulties are encountered
when one tries to construct a theory of nuclear
electrons and of 8 emission. The first arises from
the continuous B-ray spectrum. If the law of
conservation of energy is to remain valid, one
must assume that a fraction of the energy set
free in 8 decay has, up to now, escaped our means
of observation. For example, one can assume in

! Compare the preliminary article: La Ricerca Scientifica
2, No. 12 (1933). (In addition to this reference in the title,
a note states that the paper was received on January 16,
1934. The paper lists the author as E. Fermi in Rome.)
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conformity with the proposal of Pauli, that not
only an electron but also a new particle, the so-
called “neutrino” (mass of the order of or smaller
than the mass of the electron and no electric
charge) is emitted in 8 decay. We base the pro-
posed theory on the hypothesis of the neutrino.

There is an additional difficulty for the theory
of nuclear electrons in that the present relativistic
theories of lightweight particles (electrons or neu-
trinos) are not capable of explaining, in a satis-
factory manner, how such particles can be bound
in orbits of nuclear dimensions.

It seems appropriate, therefore, to assume with
Heisenberg,? that a nucleus consists only of heavy
particles—the protons and neutrons. Nevertheless,
in order to understand that 8 emission is possible,
we want to try to construct a theory of the emis-
sion of lightweight particles from the nucleus in
analogy with the theory of emission of light
quanta from an excited atom by the usual radia-
tion process. In radiation theory, the total number
of light quanta is not constant. Light quanta are
created when they are emitted from an atom, and
are annihilated when they are absorbed. In anal-
ogy with this, we wish to base the g-ray theory
on the following assumptions:

(a) The total number of electrons, as well as
neutrinos, is not necessarily constant. Electrons
(or neutrinos) can be created or annihilated. This
possibility, however, is not analogous to the crea~
tion or annihilation of an electron—positron pair.
If one interprefs a positron as a Dirac ‘“hole,”
one is able to understand that this latter process
is simply a quantum jump of an electron between
a state of negative energy and a state with posi-
tive energy, with conservation of the total number
(infinitely great) of electrons.

(b) The heavy particles (neutrons, protons)
may be treated (as by Heisenberg) as two internal
quantum states of the heavy particle. We formu-
late this by the introduction of an intrinsic coordi-
nate, g, of the heavy particle which can assume
only two values: p=1 if the particle is a neutron,
p=—1if the particle is a proton.?

2'W, Heisenberg, Z. Physik 77, 1 (1932).

3 Translator’s note: The choice of the sign is clearly
arbitrary. However, Fermi’s choice is opposite to the one
which is more commonly used today. See F. Mandl, Intro-
duction to Quantum Field Theory (Interscience Publishers,
Ine., New York, 1961), p. 79.
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(¢) The Hamiltonian function of the system
consisting of heavy and lightweight particles must
be so chosen that each transition from a neutron
to a proton is associated with the creation of an
electron and a neufrino. The reverse process
(change of a proton into a neutron) must be as-
sociated with the annihilation of an electron and
a neutrino. Note that by this, conservation of
charge is assured.

II. THE OPERATORS WHICH APPEAR IN
THE THEORY

In accordance with these three requirements,
a mathematical formalism of the theory can be
developed most easily with the help of the Dirac—
Jordan—Klein* method of “second quantization.”
Therefore, we regard the probability amplitudes
of the electrons and the neutrinos, ¢ and ¢, as
well as their complex conjugates ¢* and o*, as
operators. On the other hand, for the deseription
of the heavy particles, we use the usual repre-
sentation in configuration space, where of course
p must be included as a coordinate in the cal-
culation.

We first introduce two operators, Q@ and @*
which operate like the linear substitutions,

0 1 0 0
Q*: ?
10

Q= (1)

00
on the functions of the two-valued variable, p.
It is easily seen that @ represents a transition
from a proton to a neutron, and @* a transition
from a neutron to a proton.

Asiswell known, the meaning of the probability
amplitudes ¢ and ¢, when interpreted as operators,
is the following: let ¥y« s+ - - be a system of
individual quantum states for the electrons. One
then can write

2D 2N D WA A ()

The amplitudes o, and the complex conjugate
quantities a,* are operators which operate on the
functions of the occupation numbers Ny, N, + - -,
N, -+, of the individual quantum states. When

the Pauli principle is applicable, N, may take on

+For example, compare P. Jordan and O. Klein, Z.
Physik 45, 751 (1927); W. Heisenberg, Ann. Physik 10,
888 (1931).
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only the two values, 0 and 1. The operators a, and a,* are then defined in the following manners:

;¥ (NiNye o s Ny o) = (—1) Nrtdzso-
a* T (NiNye o e Nye o o) = (—1) Vit

The operator a,* represents the creation and
the operator a, the annibilation of an electron in
a quantum state s.

Corresponding to Eqs. (2), one writes for the
neutrinos:

@= Z §0ab_¢r, ¥ = Z ¢v*ba*~ (4)

be® (M Mae -+ Mye e o) = (—1)MrMat
b,*(P(MlMQ' *

The operators b, and b,* represent respectively
the annihilation and the creation of a neutrino
in a quantum state o.

III. CONSTRUCTION OF THE
HAMILTONIAN FUNCTION

The energy of the entire system consisting of
heavy particles and lightweight particles, is the
sum of the energies Hy,. of the heavy particles
plus Hp,. of the lightweight particles plus the
interaction energy H between the heavy par-
ticles and the lightweight particles. We write the
first term in the form,

Hyp.=3(1+0)N+5(1—p) P, (6)

since for the present we consider only a single
heavy particle. N and P represent the energy op-
eritors of the neutron and of the proton respec-
tively. For p=1 (neutron), Eq. (6) reduces to N:
For p=—1 (proton), Eq. (6) reduces to P.

The energy H;, of the lightweight particles
assumes its simplest form when one takes sta-
tionary states for ¥, ¥a, <++ ¥ ++ -, the quantum
states of the electrons, and ¢1, @2 ***, @r = -,
the quantum states of the neutrinos. In doing
so, one probably should chose the stationary
states of the electrons in the Coulomb field of the
nucleus, because of the electron screening. One
can simply assume plane deBroglie waves for
the neutrinos, since the force acting on the neu-
trinos probably plays no significant role. Let
Hy Hy, Hs, +++, Hye++ and Ky, Ko, +++ K,+-- be
the respective energies of the electrons and the

ot (1 =N )W (N Ny e 1—=N,-- ),

N i N3O (NiNge e o1 —Nye - +). (3)

The complex conjugate quantities, b,, b,*, are
operators which operate on the functions of the
occupation numbers My, My, -+, M,, «-- of the
individual quantum states ¢1, @2, *+*, @5 <+ of
the neutrinos. If one assumes that the Pauli prin-
ciple is also true for the neutrinos, the numbers
M, may have only the two values 0, 1. Further,®

Mo (1 - M) S (M Mye - -1— M, -,
My e n) = (—1) MMt Mo} B (M M)

(5)

neutrinos. Then we have

Hip.=2 HNA+ Y KM, (7)

The interaction energy must yet be written.
First, this consists of the Coulomb energy between
the proton and the electrons. For heavy nuclei,
however, the attraction by a single proton plays
only a subordinate role’ and, in any case, does
not contribute to the process of § decay. For the
sake of simplicity, we do not consider this term
further. On the other hand, we must add a member
to the Hamiltonian function which fulfills the con-
ditions of (¢) in Sec. I.

According to Sec. II, the necessary term to
couple the change of a proton into a neutron
with the annihilation of an electron and a neu-
trino, has the form,

Qasb,. (8)

On the other hand, the complex conjugate opera-

tor,

Q*as*bq'*, (8')
couples the reverse process (the change of a
neutron into a proton, creation of an electron

and a neutrino).

5 Translator’s note: as and a.* are reversed on the left
side of Eq. (3). From the right sides of Eq. (3) it is obvious
that the upper equation is the equation of creation and
the lower equation that of annihilation.

8 Translator’s note: Here, as in Eq. (3), b, and b,* are
reversed on the left side of Eq. (5).

7 Naturally, the Coulomb potential of the many other
protons must be regarded as a static field,
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An interaction term which fulfills requirement
(e), therefore, can be written in the following
form,

H=Q 2 .ty +Q* Y coo™a*b,*, (9)

where ¢,, and ¢,,* represent quantities which may
depend on the coordinates, momenta, etc. of the
heavy particles.

For a more exact statement of H, one is guided
by criteria of simplicity. An essential limitation
on the freedom of choice of H is fixed by con-
servation of momentum, as well as by the require-
ment that Eq. (9) must remain invariant under
a rotation or a translation of the spatial coordi-
nates.

If we first neglect relativistic corrections and
spin interaction, the simplest choice for Eq. (9)
would probably be the following:

H=g[Q¥(@)e(x) +Q*(2)e*(x) ],

where g represents a constant with dimensions
PPmi=%, and « represents the coordinates of the
heavy particles. ¥, ¢, ¥*, ¢* are given by Eqs. (2)
and (4), and are to be evaluated at the position
(2, y, 2) of the heavy particles.

Equation (10) in no way represents the only
possible choice for H. Any scalar expression, as
for example,

L(p)¥(z) M (p)e(z) N (p) +ec.c.,

where L(p), M (p), N(p) represent suitable func-
tions of the momentum of the heavy particles,
would be just as good. However, since the con-
clusions from Eq. (10) up to now appear to be in
harmony with experience, it probably is better
to limit oneself to the simplest choice.

It is essential, however, to generalize Eq. (10)
In such a way that one can at least treat the light-
weight particles relativistically. Naturally, when
making this generalization, a certain arbitrari-
ness cannot be excluded. The simplest solution of
this problem might be the following: Relativisti-
cally the four Dirac functions 1, ys, ¥s, s, and
@1, @2, @3, ¢4, take the place of ¥ and ¢. Now, we
consider the 16 independent bilinear combina-
tions of ¥i, ¥z, Y3, ¥4, and @1, 01, @3, s Under a
Lorentz transformation of the coordinates, these
16 quantities undergo a linear transformation,
which is a representation of order 16 of the Lorentz

(10)
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group. This representation splits into various
simpler representations. In particular, the four
bilinear combinations:

Ao= —drpataort¥sps—Paps,
Ar=v10s—Yaps —¥so1 e,

Ao =Wngs+ Wapa— Waer — Waps,

As= —y1ps—Vops e tuer, (11)

transform as the components of a polar four-
vector; and hence, as the components of the
electromagnetic four-potential. The next thing
which must be done is to introduce the quantity
g{(QA Q¥4 ) in the Hamiltonian function of
the heavy particles in 2 manner analogous to the
placing of the components of the four-potential.

Here, we meet a difficulty originating in the
fact that the relativistic wave equation of the
heavy particles is unknown. If the velocity of the
heavy particles is small relative to ¢, one can limit
oneself to the term analogous to eV, where V is
the scalar potential, and write

H =g[ Q(—rpatvops+¥soa—vues)
FOQ* (— e ot o — Yt es™) .
(12)

In addition to this term, other terms of the order
v/¢ should be added. Since in nuclei the velocities
of the neutrons and protons usually are small
relative to the velocity of light, we, for the present,
neglect these terms. (See, however, Sec. IX.)

Equation (12) can be abbreviated symbolically
in the following manner:

H =g[QF*so+Q*f50*],

where ¥ and ¢ are written as vertical column
matrices. The ~ sign represents the Hermetian
conjugate matrix; and

(13)

[‘0 ~1 0 0]
1 0 00
b= (14)
0 0 01
[0 o0 —1 0]

With these designations, one obtains by compari-
son with Eq. (9),

Csq = gﬂZs*aﬁﬂay
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and
csa*=g$s6§0a*, (15)

where ¢, and g,,® represent the normalized four-
component eigenfunctions of the states s (of the
electron) and ¢ (of the neutrino). ¢ and ¢ in Eq.
(15) are to be evaluated at the positions of the
heavy particle, and therefore, are funetions of
(xf y, Z) .

IV. THE PERTURBATION MATRIX

With the help of the constructed Hamiltonian
function, the theory of 8 decay can be developed
in complete analogy with radiation theory. In
the latter case, as is well known, the Hamiltonian
consists of the sum of the energy of the atom plus
the energy of the pure radiation field plus the
interaction energy. This last term is considered
as a perturbation to the other two. In our case,
as an analogy to this, we treat the sum

Hh.p._l_Hl‘p,; (16)

as the unperturbed Hamiltonian, to which we
must add perturbation represented by the inter-
action term, Eq. (13).

The quantum states of the unperturbed system
can be denoted in the following manner:

(p, 7, NyuNae - -Nyo o - MiMy-+ - M,- ), (17)

where the first number, p, assumes one of the
two values +1 or —1, and indicates whether the
heavy particle is a neutron or a proton. The second
number 7, designates the quantum state of the
neutron or proton. For p=1 (neutron), let the
suitable eigenfunction be

(18)

where z represents the coordinates of the heavy
particles with the exception of p. For p=—1
(proton), let the eigenfunction be

un () ,

a (). (19)

The remaining numbers NNy« N+ o - M Ms- - -
M,--+ may have only the two values 0, 1 and
indicate whether a particular electron or a neu-
trino state is filled.

If one considers the general form of the per-
turbation energy [Eq. (9)7], one sees that the
elements are different from zero only for such

8 Translator’s note: ¢, (sie) should be ..

WILSON

transitions in which either a heavy particle goes
from a neutron to a proton state at the same time
as an electron and a neutrino are created, or if
the reverse process oceurs.

With the help of Eqgs. (1), (3), (5), (9), (18),
and (19), one gets immediately the matrix ele-
ments in question

HﬂlleNz...18...M1AMZ..‘1‘...
= / OmCso Undr,  (20)

where the integration must be carried out over
configuration space of the heavy particles (with
the exception of the coordinate p). The 4 sign
means

( — 1) Nit+Not- - +Ns—1+M1+M2: - '+Mv—1,

and drops out of the following calculation. A com-
plex-conjugate matrix element corresponds to
the opposite transition.

If one introduces for ¢,* the value of Eq. (13),
one obtains

H_lmlslvlnoso’ = :Eg/ T)m*UmKZsaﬁﬂg*dT, (21)

where for brevity all constant indices have been
omitted from the first term.

V. THEORY OF g DECAY

A B decay is the process by which a nuclear
neutron changes into a proton at the same time
as an electron, which is observed as a g8 ray, and
a neutrino are emitted by the described mecha-
nism. In order to calculate the probability of
these processes, we assume that at time =0 a
neutron exists in a nueclear state with eigenfunc-
tion %, () and N,=M,=0. That is, the electron
state s and the neutrino state o are empty. Then
for t=0, the probability amplitude for the state
(1, n, 0, 0,) is

(22)

A1n0,0, = 1,

and it is zero for the state (—1, m, 1,, 1,) where
the neutron is changed into a proton with the
eigenfunction v,(x) by emission of an electron
and a neutrino.

Using the usual perturbation formula, for a time
which is short enough that Eq. (22) remains
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approximately true, one gets
G, = — (278/ ) H 150,170
X exp2ri/h(—W+HAK)t, (23)

where W represents the energy difference of the
neutron and the proton states.

From Eq. (23) one obtains, (since for ¢=0,
Llelsl,:O)

— 0
Ot 1, = H gt 1, 0%

" exp[ 2ni/h{—W+H,+K,)t]—1
~W+HAK, ‘

(24)

The probability of the transition is therefore,
for a time ¢,

| a—1mll, [2=4 | H 1,770 |2

Slnz(ﬂ'l‘;/h) ( -_— W+H5+K¢r)
<_W+H5+Krr)2

In order to calculate the lifetime of the neutron
state u,, one must sum the expression (25) over
all unoccupied electron and neutrino states. An
essential simplification in carrying out this sum
is obtained by noticing that the de Broglie wave-
length for electrons and neutrinos with energies
of a few million volts is significantly greater than
the nuclear dimensions. Hence, in first approxi-
mation, one can consider the eigenfunctions .
and ¢, as constant within the nucleus. Equation
(21) then becomes

(29)

H _1m13,1%05% = g b, * [ v undr.  (26)

Here, and in the following, ¢, and ¢, are to be
evaluated at the position of the nucleus (see Sec.
VIII). From Eq. (26) one obtains

I thmlslghmsoe [2
f vm*undr

The neutrino states ¢ are determined by their
momentum p, and the spin direction. For normali-
zation purposes we quantize in a volume @, whose
dimensions subsequently will be allowed to become
infinite. Then the normalized neutrino eigen-
functions are plane-Dirac waves with density QL
By simple algebra the average in Eq. (27) can be
taken over all directions of p, and all spin direc-

2

=g Tedo, 3oy, (27)
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tions of the neutrino. {Only the positive eigen-
values are to be counsidered. The negative eigen-
values are removed by an artifice analogous to
the Dirac hole theory.) One obtains

<l H‘Imlsldlnﬂsﬂa lz)av

2
I l /vm*undr

2 ~ ;.L02 -~
10 (ﬂbskl/s—"['{— 30863&5); (28)

where u represents the rest mass of the neutrino
and g the Dirac matrix

1 0 0 0]
01 0 0
g= (29)
00 —1 0
00 0 —1_|

Notice now that the number of neutron states of
positive energy with momentum between p, and
Dotdp, is  (87Q/h¥)plidp,, that 0K,/dp,=v,,
where v, represents the velocity of the neutrino
in state ¢; and that Eq. (25) has a sharp maxi-
mum near the value of p, for which the variation
of the unperturbed energy disappears, that is

—W+H+K,=0. (30)
Therefore, Eq. (25) can be summed over ¢ in a
well-known manner,? and one obtains
8y
r

¢

X ‘ /Vm UndT ” ¢S¢S~K¢,— Kbsﬁﬁbs); <31)

where here p, means the value of the neutrino
momentum for which Eq. (30) is true.

VI. FUNCTIONAL DEPENDENCE OF THE
TRANSITION PROBABILITY

The probability that during the time ¢, a 8
decay with transition of an electron into a state
s takes place is given in expression (31). As it
should be, this probability is proportional to the
time ¢ (if ¢ is regarded as small with respect to the

® For the exact description of the method of carrying out

such sums compare any article on radiation theory; e.g.,
E. Fermi, Rev. Modern Phys. 4, 87 (1932).



1156 FRED L.

lifetime). The coefficient of ¢ is the transition
probability for the deseribed process. It is

8dg?
s 74

X l / O UnllT

One notices the following:

v, ‘)&s‘ps_KU %B%) (32)

(a) For the free neutrino states, K, is always
greater than uc®. Therefore, to satisfy Xq. (30), it
is necessary that

H,<W— e (33)

The equal sign corresponds to the upper limit of
the continuous §-ray spectrum.

(b) Since for the free electron states H,>mc?,
one obtains the following necessary condition
for 8 decay to occur:

Wz (m+u)ct (34)

Thus, an occupied neutron state n in the nucleus
must lie high enough over an unoccupied proton
state m so that the 8 process can go through it.
(¢) According to Eq. (32), P, depends on the
eigenfunctions ., vm of the heavy particle in the
nucleus through the matrix element,
Qumn™* = / D UndT. (35)
In B-ray theory this matrix element plays a role
similar to the matrix element of the electric mo-
ments of an atom in radiation theory. The matrix
element, Eq. (35), normally is of the order of
magnitude 1. However, because of special sym-
metry properties of «. and v, it often can occur
that Qun* disappears. In such cases we speak of
forbidden B transitions. Naturally, one must not
expect that a forbidden transition may never
oceur since Eq. (32) is only an approximate
formula. We say something about this type of
transition in Sec. IX.

VII. MASS OF THE NEUTRINO

The shape of the continuous 8 spectrum is de-
termined from the transition probability, ¥q.
(32). We want to discuss first how this shape de-
pends on the rest mass of the neutrino, g, in order
to determine this constant by comparison with

WILSON

empirical curves. The mass, g, is contained in
the factor p,2/v,. The dependence of the form
of the energy distribution curve on g is most
pronounced near the end point of the distribution
curve. If By is the maximum energy of the 8 rays,
then one sees without difficulty that the distribu-
tion curve for energy E near Eo, up to a factor
independent of E, behaves as

Do/ = (u+Eo—E) [ (E—E)?
1-2uc(By—E) 42 (36)

In Fig. 1, the end of the distribution curve
for p=0 and for large and small values of u is
sketched. The greatest similarity to the em-
pirical curves is given by the theoretical curve for
u=0.

M Large

U Small

K=0

E.

Fig. 1. The end of the distribution curve for p=0 and for
large and small values of p.

Hence, we conclude that the rest mass of the
neutrino is either zero, or, in any case, very small
in comparison to the mass of the electron.’® In the
following caleulation, we make the simplest hy-
pothesis that p=0. Then Eq. (30) becomes

Ve=0C, K,=p.c,

and
p.=K,/c=(W—H,)/c. (37)
The inequalities (33) and (34) become now

H<W,

1 In a notice appearing recently in Compt. Rend. 197,
1625 (1933), F. Perrin comes to the same conclusion by
qualitative considerations.
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and
W =me. (38)

The transition probability, Eq. (32), takes on

the form,
/ U UndT

8ig?
= cht
Viil. LIFETIME AND SHAPE OF THE
DISTRIBUTION CURVE FOR
“ALLOWED?” TRANSITIONS

2

b (W—H,)2  (39)

From Eq. (39), one can derive a formula which
gives how many 8 transitions take place in a unit
of time for which the 8 particle has a momentum
between men't and me(n+dn). For this purpose,
one must derive a formula for the sum of ..
(evaluated at the position of the nucleus) over
all quantum states, of the continuous spectrum,
within the interval in question.

It should be noted that the relativistic eigen-
functions in the Coulomb field become infinite
for the state with j=1 (2s;/» and %py;) when r=0.
However, the nuclear attraction for the electrons
obeys the Coulomb law only for » greater than

25674 71'1,_5(::1 (41rmcp>2s
[T(38+28)F A7 h

(L2

X 2428 expary ——
1

P(n)dn=dy-g*

/ U Undr

T(14 84y
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p, where p here means the nuclear radius. A rough
calculation shows that if one makes plausible as-
sumptions of the way the electric field behaves
within the nucleus, the value of J.. at the center
lies very near the value that J., would take for
the case of Coulomb’s law at a distance p from
the center.

By drawing on the well-known formula®? for
the relativistic eigenfunctions of the continuum
for hydrogen-like wave functions, one finds after
a rather tedious calculation that

_— 32mm3c? (41rm¢p>23 pios
T T e A
231/2 1 2)1/2 2
X expry AT ’ r<1+s+m LﬂL) ,
Ui U
(40)

where
vy=27/137; S={(1—yH)2—-1.

The transition probability into an electron state
with a momentum in the interval medn becomes,
according to Eq. (39),

(41)

2

2

L(14n?) 2= (1492 V2P,

(L4
S ) (42)

where 7o represents the maximum momentum of the emitted 8 rays, measured in units of mc.
Numerical evaluation of Eq. (42) can be made, e.g., for y=0.6, corresponding to Z=82.2, since

the atomic numbers of the radioactive elements do not lie far from this value. For v=0.6,
=—0.2, according to Eq. (41). One finds further that for <10, the following formula is

approximately true:

Sl
7

7% exp [(0.671-)

If p is set equal to 9(107%), Eq. (42) becomes

2
/ Vo Undr

X (n+0.3557") [(14net) V21— (1442 2P (44)

" Translator’s note: » is not explicitly defined in the
text. It is the ratio (v/c)/[1—(v/c)®!]"2, where v is the
electron velocity. This is equivalent to m./mc: hence
men=m.w, the relativistic momentum at the velocity o.
The rest mass of the electron is m.

P(n)dn=1.75(10%)¢?

T [0‘84-0.61'

2

=4 5n-+1.69% (43)

(1+:2) 1’1

The reciprocal lifetime is obtained by integra-
tion from 5=0 to n=mn.
One finds that

Fln), (45)

f Vo Ul

2R. H. Hulme, Proc. Roy. Soc. (London) 133, 381
(1931).

1= 1.75(10%) g2
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Tasre I. The value of F(yo) for large values of 5o

F{(90)
70%/24
0.03
1.2
7.5
29
80
185
380

=
=

N oUW N - O

where
F(no) =3[ (1+ne") > —1]+gne* — 5o’
+0.355{ —dm—slane’+done’ +3[ (1+n*) ]
X log[ne+ (149212}, (46)

For small arguments F(xy) behaves as 5f/24.
For larger arguments the values of F are collected
in Table 1.

IX. FORBIDDEN TRANSITIONS

Before we proceed to comparison with experi-
ment, we will discuss some properties of the for-
bidden 8 transitions.

As already pointed out, a transition is for-
bidden when the corresponding matrix element,
(35), disappears. Now, if the description of the
nucleus in terms of individual quantum states
of the neutrons and protons is a good approxima-
tion, @..* always disappears on the basis of sym-

metry, unless
=7, (47)

where 7, 7 represent the angular momenta of the
neutron state 4, and the proton state v, (in units
of h/2x). If the individual states are not good
approximations, selection rule (47) corresponds
to the more general condition,

I=r, (48)

where I and I’ are the angular momenta of the
nucleus before and after the g decay.

The selection rules (47) and (48) are by no
means as rigorous as the selection rules of optics.
Principally there are two processes in which a
violation of these selection rules is possible:

(a) Equation (26) is obtained by neglecting
the variation of ¢, and ¢, within the nuclear di-

WILSON

mensions. However, if one does not consider ¢,
and ¢, to be constant within the nucleus, then one
also obtains the possibility of 8 transitions in
cases where Q,.,* disappears.

It is easy to see that the intensity of such tran-
sitions is in the order of magnitude (p/)\)2 relative
to the intensity of allowed processes, where A
represents the de Broglie wavelength of the light-
weight particles. Note that for the same energy,
the kinetic energy of the electron at the position
of the nuecleus is considerably greater than that
of the neutrino because of the electrostatic attrac-
tion. Therefore, the largest effect arises from the
variation of ¥, Kstimation of the intensity of
these forbidden processes shows that they must
be of the order of 100 times weaker than the tran-
sitions allowed by Eq. (48) if the 8 particles are
emitted with the same energy.

One can see the characteristics of forbidden
transitions of this type not only in the relatively
longer lifetime, but also in the different shape of
the energy distribution curve of the 8 rays. One
finds in particular, that for these transitions the
distribution curve for small energies lies much
lower than in the normal case.

(b) A second possibility of transitions for-
bidden aceording to Eq. (48) follows from the
fact pointed out at the end of Sec. ITI, that if one
does not neglect the veloeity of the heavy nuclear
constituents with respect to the velocity of light,
more terms of the order v/c¢ are introduced into
the interaction term, Eq. (12). Perhaps, if one
also accepts a relativistic wave equation of the
Dirac type for the heavy particles, one can add
terms to Eq. (12), as for example,

gQ (azA1+oydota.As) -c.c., (49)

where a,00. are the Dirac matrices for the heavy
particles, and A;, A., As, are the space com-
ponents of the four-vector defined in Eq. (11).
The term (49) would be related to Eq. (12) in
the same way as the term e(a, U) and respec-
tively eV are to the Dirac-Hamiltonian function.
(V is equal to the scalar potential, U is the vector
potential.)

An interaction term like (49) naturally would
also make forbidden transitions possible with a
relative intensity of the order of magnitude (v/c)?
with respect to the allowed transitions. There is,
therefore, a second possibility for the existence of
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transitions which are about 100 times weaker
than normal.

X. COMPARISON WITH EXPERIMENT

Equation (45) gives a relation between the
maximum momentum of the emitted 8 rays and
the lifetime of the g-radiating substance. In this
relation there is still, to be sure, an unknown
quantity, the integral

/ OnFuadr,

for whose evaluation a knowledge of the eigen-
functions of the proton and of the neutron in the
nucleus would be necessary. In the case of the
allowed transitions, however, Eq. (50) is of the
order of magnitude 1. One can expect, therefore,
that the product

(50)

7F (10) ’

has the same order of magnitude for all allowed
transitions. If, however, the transition in question
is forbidden, the lifetime is about 100 times greater
than in the normal case and, therefore, the product
(51) will be correspondingly larger.

(561)

TasLE II. The values of 7F (50) for the radioactive elements
for which there are sufficient data on the continuous
B spectra.

Element  r(hours) 7o F(50) 7F (o)
UX, 0.026 5.4 115 3.0
RaB 0.64 2.04 1.34 0.9
ThB 15.3 1.37 0.176 2.7
ThC"” 0.076 4.4 44 3.3
AcC” 0.115 3.6 17.6 2.0
RaC 0.47 7.07 398 190
RaE 173 3.23 10.5 1860
ThC 2.4 5.2 95 230
MsTh. 8.8 6.13 73 640

In Table II, the produect (51) is tabulated for
the radioactive elements for which one has suf-
ficient data concerning the continuous 8 spectrum.
From Table II the two anticipated groups are im-
mediately recognizable. Indeed, such a classi-
fication has already been established empirically
by Sargent,® from whose work the values of 7,

13 B. W. Sargent, Proc. Roy. Soc. (London) A139, 659
(1933).
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are taken, (For comparison, one notes that
70=(Hp) max/1700. The values of n which
Sargent lists as not too reliable, do not fit too well
into this classification; for UX;, one has r=830,
70=0.76, F (o) =0.0065, and 7F (o) =5.4. There-
fore, this element appears to fit in the first group.
For AcB one has the following data: r=0.87,
no=1.24, F (40) =0.102, 7F (no) =0.09, hence a rF-
value about 10 times smaller than the first group.
For RaD, one has r=320,000, 70=0.38 (very un-
certain), F(n) =0.00011, and 7F () =35. RaD,
therefore, lies approximately in the middle be-
tween these two groups. I have not found any
data concerning the other S-emitting elements
such as MsTh,, UY, Ae, AcC, UZ, RaC”.

From the data of Table II, one can obtain, even
if very crudely, an evaluation of the constant g.
If one assumes, say, that 7F(5) =1 (i.e. meas-
ured in seconds, =3600) in the cases where the
integral (50) equals unity, one obtains from Eq.
(45)

g=4(10"%) cm? erg.

This value naturally will be only an order of mag-
nitude of g¢.

To summarize, one can say that this compari-
son of theory and experiment gives as good an
agreement as one could expect. The discrepancies
found for the hard-to-pin-down data for elements,
RaD and AcB, probably could be explained in
part through inaccuracy of the measurements,
partly, also, by the abnormally large, although
not at all implausible, variations of the matrix
elements in Eq. (50). Note further that one can

] ) ! 1 1 4
1 2 3 4 5 6

7n

Fra. 2. Velocity distribution curves for different values
of 70,
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1 2 3 4 5 6 E/mc?

Fie. 3. Velocity distribution curves versus the energy,
E=mc/[1—(v/c)* ]2 —mc2

conclude from the v radiation accompanying the
B decay, that most 8 decays can lead to different
final states of the proton, whereby again varia-
tions in the 7F (1) value can be explained.

‘We turn now to the question of the shape of the
veloeity distribution curve of the emitted 8 rays.
For the case of allowed transitions, the distribu-
tion curve of 4 (or Hp except for the factor of
1700) is given by Eq. (44). Distribution eurves
for different values of 7, are shown in Fig. 2.
For convenience, the designations of the units of
the ordinates was suitably adjusted for the
various cases. These curves show a satisfying simi-
larity to the set of distribution eurves given for
instance by Sargent.® Only in the low-energy por-
tion of the curve do Sargent’s curves lie somewhat
lower than the theoretical ones. This is clearly

4B, W. Sargent, Proe. Cambridge Phil. Soc. 28, 538
(1932).
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seen in Fig. 3, where energy in place of momen-
tum is the abscissa. One must remember, how-
ever, that the experimental knowledge of the dis-
tribution laws for small energies is particularly
precarious.” Moreover, one also has to anticipate
that for forbidden transitions, the theoretical
curves lie lower than those of Figs. 2 and 3 in the
region of small energies. This last point is es-
pecially pertinent in the comparatively well-
known experimental curve for Ral. In Table II,
one sees that RaE has a very large 7F (no) value.
The 8 decay of RaE is, therefore, certainly for-
bidden and even if possible, will be allowed only
in the second approximation. In a further article,
I hope to be able to say something more precise
about the shape of the energy distribution curve
for forbidden transitions.

In conclusion, one can say that the theory
presented in this article is in conformity with the
experimental data, which by all means are not
always exact. Should one encounter contradic-
tions in a closer comparison of theory and experi-
ment, it might still be possible to alter the theory
without disturbing its conceptual fundamentals.
Namely, one could retain Eq. (9), but make a
different choice of ¢,,. This could lead to a change
of the selection rule (48) and yield another form
of the energy distribution curve, as well as the de-
pendence of the lifetime on the maximum energy.
However, whether such a change is necessary
can be shown only through a further development
of the theory and possibly through a refinement
of the experimental data.

16 For example, compare E. Rutherford, B. Ellis, and
J. Chadwick, Radiations from Radioactive Substances (Cam-
bridge University Press, London, England, 1932). See
especially, p. 407.



